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The generation of edge waves by moving pressure 
distributions 

By H. P. GREENSPAN 
Hurvard University, Cambidye, Massachusetts 

(Received 1 August 1956) 

SUMMARY 
An analytical study is made of the resurgent wave motion 

induced by pressure distributions moving parallel to a straight 
coast line. The resurgence is shown to consist of an infinite 
number of edge wave modes; expressions for these modes are 
given and the wavelengths, frequencies and amplitudes are shown 
to be in agreement with experimental results. The effects of a 
Gaussian pressure distribution are analysed. For large-scale 
disturbances off the east coast of the United States only the funda- 
mental mode is excited. Conditions, such as storm size, speed 
and distance from shore, for maximum induced wave amplitudes 
are derived. 

1. INTRODUCTION 
It has been observed that hurricanes and other similar phenomena 

travelling approximately parallel to a neighbouring coast line sometimes 
induce a resurgent wave motion. These waves are characterized by the 
facts that they propagate along the shore line, are essentially confined within 
a distance of one wavelength from the coast (hence the name ' edge waves'), 
have wavelengths measured in miles, amplitudes measured in feet, and 
periods measured in hours. 

Munk, Snodgrass & Carrier (1956) conjectured that this resurgence 
was primarily due to the deviation of the storm pressure distribution from 
normal atmospheric pressure, and was neither wind-generated nor a 
consequence of other effects. Using a simple mathematical model for the 
pressure -deviation, with the assumption of quasi-steady state conditions 
(that the disturbance has been in existence and in motion for an infinite 
time interval), they obtained results in agreement with experimental evidence. 
Computed periods, and amplitudes agreed with known values. Their 
original conjecture concerning the cause of the resurgence was thereby 
substantiated. 

In this paper, the transient problem (i.e. with the disturbance originating 
at a finite time) is considered and applied to a more precise physical model. 

2. THE FUNDAMENTAL EQUATION AND ITS SOLUTION 

In order to motivate the choice of an appropriate model on which to 
base our calculations, we anticipate (as indicated in the introduction) that 
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the hurricane generated surface waves will display an amplitude 7 of the 
order of 3 feet, a wavelength h of about 200 miles, and a period of about 
6 hours. The extremely long wavelengths and small wave heights suggest 
that the linear shallow water theory may be applied. In  order that this 
theory may provide a valid approximation, the wavelength of a progressive 
wave propagation must be large compared to the ocean depth, the ocean 
depth must be large compared to the wave height, and the gradients of the 
wave height and depth must be small compared to unity. Simple estimates 
of the orders of magnitude involved show that in the phenomena in question 
these conditions are satisfied. 

The linearized theory essentially eliminates the depth variable x from the 
exact analysis by averaging the velocity components over the depth. The 
pressure is then hydrostatic (see Lamb 1945 for a more complete analysis). 

X 
U 

Figure 1. Fluid with a fixed boundary and 3 free surface. 

With the meaning of the symbols shown in figure 1, and with uniform 
density p, the conservation equations of mass and momentum are 

(1) 

(2) 

W X , Y ,  t )  - - a(uh) a(vh) . 

1 ap(x,y,  x, t )  . 
at ax  aY ’ 

av - - - _ -  1 aP(x,y, z ,  t )  
at P ax at P aY ’ 

24x7 Y 1 -= - -  

where P(x,y, z ,  t )  = P(x,y,  0, t )  +gp(q - x), and P(x,y,  0, t )  is the applied 
surface pressure. We may eliminate u and v to obtain 

1 a Z 7  1 
g at Pi? 

v . (hVy) - - -2 = - - (hV2P+ V h .  VP).  (3) 

Here and in the following, P(x,y,  0, t )  is replaced by P or P(x,y, t).  We 
can also define a potential function by the relations u = +/ax, v = a+/ay, 
and eliminate 7 to obtain an equation for + : 

the wave height being 

It remains to specify the ocean depth h, and to linearize the topography. 
We consider only a straight coast line, and take the ocean depth to be a 
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linear function of distance from shore y, i.e. h = ay. For the constant ci, 
we choose the average slope of the ocean depth over the first 120 miles. 
Munk, Snodgrass & Carrier (1956) have shown that since the wave motion 
under investigation is sensibly zero farther than XI2v from shore, it is essen- 
tially independent of the manner in which the ocean depth varies at these 
large distances. . Since the phenomenon in which we are primarily interested 
is essentially confined to the continental shelf, the approximation of constant 
slope is adequate. The total linearization of the actual topography is then 
a straight coast line and a constant slope depth (figure 2). 

' t /  

Figure 2. Linearized ocean depth and coast line topography. 

With h = ory, equation (3) becomes 
arl 1 3% 
at ug a t 2  

yv29 + - - - - = - ql(x,y, t )  = - 

and equation (4) becomes 
a+ 1 a24 1 ap 

a t 2  pgor at 
yo%$+ aT - - - = -q2(x,y,t)  = - -. (7) 

/ 

Given that P(x,y,  t )  = 0 for t < 0, the correct boundary conditions are: 
q(x,y, 0) = 0, a ~ ( x , y ,  o)jat = 0, q(x ,y ,  t )  --f 0 as I x (  -+ co for all positive y ,  
and also asy +- co for all x (the phenomenon is confined to the shelf), and 
finally that the wave height is finite at the shore line. This finiteness condition 
is the most liberal physical requirement one can apply in the coastal region 
where the linearized differential equations are not a valid description. 

Since equations (6) and (7) differ only in the form of the forcing function, 
we need only solve the former; the solution to the latter is obtained by 
replacing 7 by 4 and q,(x,y, t )  by q2(x,y, t) .  We can now take Fourier and 
Laplace transforms of equation (6). Defining 

1 (8') 

'OD m 

f(k,y,s) = eikx dx 1 e-st7(x,y ,  t )  dt 
-a 0 

\ I  
00 co 

Qj(R,y,s) = j eitX d x  1 e-8tqi(x,y, t ) d t ,  1 
- m  J O  J 

where j = 1,2, we obtain 
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The boundary conditions become If(k, 0, s)I < co and f ( k , y ,  s) -f 0 as 
y - f  co. Anticipating difficulties with the inverse Fourier transform, we 
shall solve, instead of equation (9), 

' d y B  d y +  "-($ dy +k,y)f = --Q1(kyyys), 

subject to the same boundary conditions. After taking the inverse Laplace 
and Fourier transforms of the solution of equation (lo), we shall let E tend 
to zero to obtain the solution of equation (6) .  If it is convenient and 
proper, we can also perform this limiting process at some intermediate 
step. The function kx is not single-valued in the complex k plane and we 
restrict its possible values by two branch lines originating at f i e  and 
extending to f i co respectively. The reasons for this particular choice 
will become evident shortly. We choose the Riemann sheet for which 
k* >, 0 on the entire real axis. 

A few simple substitutions will enable us to rewrite equation (10) in a 
more convenient form. Let 

The boundary conditions become exp( - &u)p,(u) 3 0 as u + co and 
(p,(k, 0, s)[ c a*. To solve (13), we expand $,(A, y ,  s) and 

in terms of Laguerre polynomials (see Courant & Hilbert 1953), and 
then use the differential equation to determine the unknown coefficients. 
The expansions are 

00 

Plb)  = P l ( k  % s) = 1 4 3  L, (U) ,  (14) 
,=O 

where 

*We can consider K and s to be real numbers until it is necessary to invert the 
Fourier and Laplace transforms. 

F.M. Z Q  
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Substituting these expansions into equation (13) and using the fact that 
L,(u) satisfies Laguerre's differential equation 

we obtain 
uLz(u) + (1 - u)Li(u) + nLn(u) = 0, (18) 

We use the orthogonality relation 

JOm e - u ~ , ( u ) ~ , ( u )  du = (n  ! )2smn (20) 

to equate coefficients, and hence determine that 

-Bn 
( n  + 4 + s2/2xgK,) - A, = 

(pl(u) satisfies the boundary conditions, since each L,(u) does) or 

The wave height is then obtained by inverting the Fourier and Laplace 
transforms ; i.e. 

e--ikz ~ K J  e*y(k, 2, s) ds. 

The path of integration in the K plane for the inverse Fourier transform 
must lie within a strip containing the real axis. The function K ,  has been 
defined with this in mind ; i.e. the inversion contour can pass between the 
two branch points -t ie without crossing a branch line. 

There are other ways to solve equation (13); methods involving the 
solutions of the homogeneous equation (i.e. confluent hypergeometric 
functions) lead to extremely difficult integrations. A Green's function 
technique for solving (6),-although of little practical value, reduces to an 
interesting eigenvalue problem, one with both a discrete and a continuous 
spectrum; this will be the subject of a future paper. The advantage of 
the method used lies in the fact that we shall be able to consider separately 
the effects of a pressure distribution on the individual edge wave modes, 
easily eliminating extraneous parts of the solution. The wave motion 
can be determined with little difficulty. 

im+  r, 

(24) 
1 "  

?7(%YJ) = 4xl-m -im+e. 
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3. APPLICATION TO THE MODEL OF MUNK, SNODGRASS & CARRIER 

579 

Let us now consider this model, adjusted so that it arises at some finite 
time. The surface pressure is 

where H(t)  is the Heaviside function, U is the velocity at which the disturb- 
ance moves parallel to the coast, and a is the half-pressure radius. The 
resemblance to actual hurricanes is poor, but the Fourier transform is 
simple. We shall solve for the wave height T,I directly. The forcing 
function is, from equation (6), 

Po a (x + Ut)2 - ( y  + a)2 41(x,y,t) = - [(x - Ut)2 + (y  + a)”]” pg 
and its transform is 

which is constant, so that 
,,Po a k ,  exp( - ak,) 

B, = - pg 2k,(s-ikU) ’ and B,  = 0 for n # 0. 

Thus the expansion of equation (22) reduces to one in which only the 
‘first’ Laguerre polynomial, L,(u) = 1, appears. This implies, as we 
shall see, that this pressure distribution can excite only the fundamental 
edge wave mode. The Fourier Laplace transform of T,I is 

where 
a7r Po a 

y = - - .  P 
The wave height is determined by taking inverse Laplace and Fourier 
transforms as in equation (24). The function f(JE,y, s) is not meromorphic 
in k ,  but is in the variable s, having simple poles at s = ik U, s = k i(ocgk+)1‘2. 
It is, therefore, much simpler to compute first the inverse Laplace trans- 
form. We set 

and upon performing the integration we obtain for t > 0 

exp(ik Ut) + k2 U2 - agk, r (k7y,  t )  = - yk,  exp{ - L ( y  + a)}{ 

exp{i(agk,)1/2t} exp{ - i(agk,)1/2t} + 2(agk,)1/a{(agk,)1/2 - kU} + 2(agk,)1‘2{(agk,)1/2 + k U }  

and r(k,y, t )  = 0 for t < 0. 
2 Q 2  
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As a function of K, r(k,y, t )  has no poles on the real axis. 
the problem is then 

The solution of 

(29) 

or 

Y q(x,y,t) = - ~ ( I + I I + I I I ) ,  

where 

Although the original integrand has no poles, and the path I' may be the 
real axis,  each individual term does have one or more poles ; I' must therefore 
be suitably altered. We can easily verify that (30) is a solution of equation(6) 
by formally carrying out the differentiations. 

I is the 
easiest and'we evaluate it first. This term represents the quasi-steady 
state solution derived by Munk, Snodgrass & Carrier (1956). (The terms 
due to a finite starting time are therefore the last two integrals.) The best 
contour to take is one that minimizes the effect in front of the pressure spot 
and produces a reaction behind it. Any contour will finally give a correct 
result for q provided we are consistent ; however, we wish to give a definite 
physical meaning to I, independent of II and 111. The poles of f r  are 
located at k, U2 - ag = 0, i.e. 

Our task is now to evaluate and interpret these integrals. 

for E = 0 ; k, is located in the right half plane, and kl in the left half plane. 
The best contour is one that goes under both of these singularities as in 
figure 3. For x > Ut, we may close the contour I' in the lower half plane by 
the quadrants, rl, I?;, the two sides of the branch line r4, and the circular 
path about the branch point, as shown ; for x < Ut we may similarly close 
the contour in the upper half plane. The poles contribute values for 
x < Ut only. The integrals about the branch lines are easily computed. 
The integrals over connecting quadrants tend to zero as Ik I -+ co, and the 
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integrals round the small circles about branch points tend to zero as the 
radius 11% I tends to zero. The result is 

2 
I = ~ R e Y ( l , l , i k o [ l x - U t [ + i ( y + a ) ] )  x < Ut, 1 

} (33) 
4T 
U2 I = -exp{-k,(y+a))sink,(x- Ut)+ 

2 
-!- pReY(l, l , iko[lx- Utl+i(y+u)]) 3c < Ut 

where Y is the confluent hypergeometric function of the second kind (see 
Erdelyi 1954). Asymptotically, for large values of (x- Ut)2+ (y + a)2, 

Figure 3. Fourier inversion contours for X < or > 0. 

Y is proportional to the surface pressure P(x,y,t). The result consists 
of a resurgence for x < Utj together with a motion restricted to the immediate 
neighbourhood of the pressure spot for which the wave height is the direct 
effect of the distribution on the ocean surface. 

We now show that 11 and 111 essentially yield a cancelling wave, 
- ( 4 ~ /  U2) exp{ - K,(y + a)} sin k,(x - Ut) for x < 8 Ut, implying that the 
resurgence is given asymptotically by 

27rP, ak, 
Pg 

where KO is ag/Ua as in (32). 

exp{ - K,(y +a)} sin k,(x- Ut) for 4 Ut < x < Ut 3 -  

r) - 0 elsewhere, 
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The integral to be evaluated is 
expl: - i{kx - (Ocgk,)1’2t) - k,(Y -t- 41 &. 11 = I, 2(orgk,)1/2((agk,)l/2 - u> 

To obtain results which are applicable when x and Ut are both large compared 
to y + a, we use a steepest descent procedure ; it is noted that if 

were not present, we could integrate explicitly. The method of steepest 
descents is used to remove exp{ - k,(y + u)}  from the integrand, and the 
remaining integral is then evaluated. 

Let x < 0, t = x/F, then I1 = exp{xf(k)}$(k) dt, s, 
where 

We are interested in x and Ut large compared to y + u ;  accordingly 
exp{ - k,(y + u))  is included in the slowly-varying function +(A). The 
saddle point, determined from the conditionf’(s,) = 0 is 

so = - 4/92 - 
The path of steepest descent is (if k = [+ip,  and E = 0) the parabola 

(34) 

Figure 4. Contour deformation of the inversion path. 

By considering the properties of the integrand f I I ,  and, specifically, 
the behaviour of the factor 

exp[-ikx+(agk*)1’2-k.(y+a)] 

as lkl tends to infinity in the third quadrant, we can show that 

1 f n d k  = j f IIdk  
P TI 

(see figure 4). Thus far it has been essential to keep one branch line in 
the upper half plane, and the other in the lower half plane. The branch 
line from k to ico can now be turned into the third quadrant (figure 5 ) ;  
and, for computing purposes, it will be taken to be the ray 8 = &, where 
the angle 0 has its usual meaning. We use the contour r3 about the branch 
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line and the paths r4 and rS, which are the arcs of a circle of radius R, 
to form a closed loop (in the limit as R +  co) with the path of steepest 
descent. Cauchy’s theorem states that 

I- 

f jzz dk = 2ni res f z r ,  

and thereby relates Ir,f.. dk to the integral over the path of steepest descent I fzz dk (the directions of integration are shown in figure 5) .  The integrals 

over the connecting arcs tend to zero as R tends to infinity, with the result 
that 

S.D. 

where the residues are evaluated only at thdse singularities contained within 
the closed contour. The pole of f r z  ( k ,  = K O  = ug/U2) is within the contour 
only when so > k,, i.e. for For x large, the integral < 8 U or x < 4 Ut. 

Figure 5 .  Conversion from the fundamental contour to the path of the steepest descent, 

about the branch line is negligible compared with the integral along the 
path of steepest descent in the neighbourhood of the saddle point, and 
with the residue. (This is the advantage of the ‘ deformed branch line- 
steepest descent ’ method over other more direct estimations.) Hence we 
obtain 

II - f l I  dk (38) 

2ni 
U2 

-- exp[ - iko x + i(ugko)1/2t - ko(y + a)]H(+ U- /3), 

where H is the Heaviside unit function. If the integral over the path of 
steepest descent were evaluated by conventional means as detailed by 
Morse & Feshbach (1953)) the result would be 

1 
exp[ - &zg(y + a)/P2 + $iugx/P2 - &in] - 

zvz - - exp[ - ik, x + i(ugko)1’2t - k,(y + a)]H(+ U- 8). (39) U2 
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In  the neighbourhood of so = k, (/3 = 9 U or x = Q Ut), this approximation 
fails, since the pole of the integrand is too near the saddle point, i.e. the 
‘slowly’ varying function is the dominant factor. We can avoid this 
difficulty by slightly modifying the conventional technique. Instead of 
evaluating the entire integrand at the saddle point, we evaluate only part 
of it, i.e. exp[-k,(y+a)]. We obtain 

k, exp[ - ikx + i(agk,)ll2t - k,(y + a ) ]  dk 
L . D .  Z(agk,)~~2((Ccgk,)~~~ - KU} 

k, exp[ - ikx + i(~rgk,)l’~t] dk - - Z (  agk,)l~2((agk,)1~2 - k U} 

= exp[-s0(y+a)l J grr dk, say. (40) 

The last integral is equivalent to an integral over the contour I?; (figure 6), 
provided we again add the appropriate residue term when so < KO or 
x <gut; i.e. 

S.D. 

2ni 
g n d k  = / F : g l I d R f  --~jexp[-ik~x+i(agk~)~‘~t]H(frv-8). (41) 

Figure 6. Equivalent inversion path. 

The integral over I?; may be evaluated by using formula 809 of Foster & 
Campbell (1954) : 

dk exp[ - ikx + i(ahk)lJ2t] 
1- U(k/ag)1’2 

nz‘ 
U2 

= - exp[ -iko(x- Ut)] erfc[(og/Uaix)l/a(*Ut-x)] + 
ZTi + (ag/i.rrU2x)1/2 exp[i(gat2/ko x)] - r2 exp[ - iko(x- Ut)]. (42) 

Asymptotically, the final result becomes 

2m. 
II - u2 exp[ - so( y + a) - iko(x - Ut)] (4 erfc[(ag/ Ueix)l/a(g Ut - x)] - 1 ] -i- 

2m‘ 
-I- -jp m4 u- &xp[ - iko(x- Ut)l(exp[ - so(y + 41 - exp[ - M y  + 41) (43) 
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where so = ag/4$, k, = ag/U2, t = xi/!, and 

erfc u = 1 - - exp( - v2) dv. 
h T 0 

For x % i U t ,  we have 11 - 0; for 0 < x 4 i U t ,  
II  N - (2&/ U2) exp[ - ko(x - Ut) - ko(y +a)].  

Thus, for x < gut ,  II just cancels that contribution of I which arises from 
the pole at A,. It may also be shown that III = II+ (complex conjugate). 
The wave height is therefore 

q=-x 27r (I+ 2ReII) ; (44) 
and the wave height of the resurgent phenomenon is given asymptotically by 

I q w  0, x >  u t ;  

4 Ut < x < Ut ; 

17w 0, x < i u t .  

27rP0 ak, 
Pg 

exp[ - Ko(y + u)] sinko(x - Ut), (45) q w -  

The other contributions to the solution q do not contribute significantly 
to the resurgence. 

Name 

Date 

~~ 

Velocity U (knots) 

Wave Period T (hours) 
comp.: 01 = 5.0 x 

o h . :  Atlantic City 
Sandy Hook 

= 4.2 x 10-3 

Duration 
comp. 
o h . :  Atlantic City 

Sandy Hook 

CAROL 

30 Aug.- 
1 Sept. 1954 

32-34 

5.8-6 '1 
6 *9-7 -2 

5.5 
7 .O 

16-24 
20 
26 

EDNA 

11-12 Sept. 
1954 

32 

5 *8 
6.9 
6 -0 
7 -0 

17-24 
23 
- 

- 

14-15 Sept. 
1944 

33 

6.0 
7.1 
5 6 
7 *2 

11-12 
23 
30 

21-22 Sept. 
1938 

40 

7.3 
8 -6 

8 *O 
- 

9 

16 
- 

Table 1. Periods and durations of sea level disturbance due to four hurricanes. 

The resurgent wave motion induced by this simple pressure distribution, 
equation (25), is essentially restricted to the interval i U t  < x < Ut, and 
is characterized by a single wave number KO = ag/U2 (that of the fundamental 
edge wave mode) or the corresponding period T = 27rU/(ag). The dura- 
tion D, which is the time taken for the resurgence to pass a given point, is 
equal to the total time t for which the disturbance has been in existence 
and in motion. The periods and durations of the resurgences of several 
hurricanes have been computed by M u d ,  Snodgrass & Carrier; the 
observation points were Atlantic City, where a = 5.0 x and Sandy 
Hook, where a = 4 . 2 ~  lP3. Their results are presented in table 1. 
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Although the model of equation (25) bears little resemblance to an actual 
disturbance, the results are in agreement because, evidently, hurricanes 
also excite only the fundamental edge wave mode (see § 4). The computed 
periods of the fundamental mode are in excellent agreement with the 
observed periods. 

Mathematically, the existence of a resurgence is due to the fact that the 
integrand of the Fourier inversion integral has poles at K, and kp The 
analytic form of the waves is obtained by evaluating the residues of the 
integrand at these poles. These results may be generalized to the case of 
an arbitrary pressure distribution which affects all the edge wave modes. 
The analysis of each integral arising from the inverse Laplace transform 
of the infinite series, equation (23), is substantially the same as that already 
performed in equation (26) et seq. The integrals involving the nth Laguerre 
polynomial give rise to the nth edge-wave mode. The analytic form of the 
resurgence is again obtained from an evaluation of the residues of the 
Fourier inversion integral. The final result is that, for disturbances 
originating at t = 0 and travelling parallel to the coast with constant velocity 
U, the resurgence, which is a sum of all the edge-wave modes, is asymptotically 
given by 

7 7 w - 0 ,  x >  ut; I 
W - 2 A,(K,) exp( - K,y)L,(2K,y) sinK,(x - Ut), 4 Ut < x < Ut ; } (46) 
0 

x < iut, j 
where exp( -K,y)L,(Zk,y) sin K,(x - Ut) is the nth mode, its amplitude 
being A#,), K ,  = (2n + l)arg/ U2 = (2n + l)&. The resurgence is confined 
to the interval 4Ut < x < Ut ; the front moves with the speed of the storm 
U, and the rear moves with group velocity gU. The duration is the same 
as that previously calculated. 

We may now apply these results to a more exact mathematical model, 
no new techniques being needed. 

4. THE GAUSSIAN PRESSURE DISTRIBUTION 

T o  investigate how the various modes are stimulated by a real disturbance, 
We consider, therefore, the effects of a we need a more realistic model. 

travelling pressure taken to have a Gaussian distribution given by 

P(x,y, t )  = Po exp 
a2 (47) 

where Po is the maximum pressure deviation, and a = 1.19r0, ro being the 
half-pressure radius. It is advantageous to use the potential-function 
formulation of equation (4). The wave height is then given by equation (5). 
On transforming to a moving coordinate system (x’ = x - Ut, y’ = y, t’ = t)  
and then dropping the primes, equation (4) becomes 

(48) 
u ap 
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By taking In  this coordinate system, the pressure is independent of t. 
Fourier and Laplace transforms, we obtain 

d2@ d@ 
y- + - -{yk2+ 

dY2 dY 
Uik 

= -Po exp[ - (y -yo)2/a2] a h  exp( - a2k2/4), 
“pgs 

(49) 
where 

00 

@ = I etkx dx loom eat 4 dt = Im est $(k,y, t) dt. 
- m  - m  

The solution of this equation (we actually solve a modified equation with 
yk: in place of y P )  is, from equation (13), 

where 
m 

0 
= K exp( - a%2/4)1 L,(2k, y)exp( - k+ y)exp{ - (y -yo)2/a2) dy. 

(51) 
The coefficient AA(k) has no poles in the finite k-plane ; its branch line and 
branch points coincide with those of k,. Taking an inverse Laplace 
transform, we find that 

2dn-iUP0 ak, exp( - k, y )  2 A;(k)Ln(2ky) 
J(k,y,t) = - P 0 (n ! ) z  

We have written only the first term of three in the brackets, because, as we 
have mentioned, it may be shown that this term gives the wave motion for 
x < Ut; the other terms add to yield a cancelling wave in the region 
x < 4Ut. T o  determine the induced modal amplitudes, we need compute 
only the wave function arising from the first term, since all additional terms 
yield the same wave. 

To  compute the amplitudes of the waves constituting the resurgence, 
we perform the inverse Fourier transform and evaluate the residues arising 
from the poles, which are at 

In  the original coordinates, the result is 
k = t - k ,  = +(2n+1)k0 = rf:(2n+l)ag/U2. (53) 

m 

+(x,y, t) = 2 +,(x,y, t ) +  I F dk, 

+(X,Y, t )  = 1 Fdk, 

$Ut < x < Ut; 

elsewhere, 
(54) 

0 

where +n is the wave motion of the nth mode, determined, as we have said, 
by evaluating the residues of the integrand at the poles k = & k, ; thus 
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The integral in (54) represents all the other terms, which do not contribute 
to the resurgence. Since the wave height is related to the potential function 
by equation ( S ) ,  the amplitude of the nth edge-wave mode, as defined in 
equation (45), is 

The amplitude ratio of the nth mode to the mth is 

jj 

J~ 

(m !)% ,2 exp( - a%2, /4) 
( n ! )2K2, exp( - a2kz /4) - =  X 

Jrn J%(2& y’)exp(-k, Y‘)exP[-(Y’ -Yo)2/a21 dY’ 
(57) ,$ ~,(2k,Y‘)exp(-k,Y‘)exPl:-(y’-yo)2/a21 dY’ 

The amplitude ratios &Ao and A,/Ao are plotted in figures (7) and (8) 
as functions of ko a for yo = 0 (storm centred on the coast line). 

Figure 7. Amplitude ratio of the first harmonic to the fundamental ws ko a. 
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We shall interpret these results in terms of the half-pressure radius yo 

and the speed of propagation U. For y = 0, P = Poexp(-r2/u2), or 
Y = 0.837~. For hurricanes travelling parallel to the east coast of the 
United States* at 32-34 knots, which is typical, k;l lies in the range 
30 < k;l < 40 miles. The half-pressure radius of these disturbances is 

3.c 

2 c  

- I .  

----t-- 
I 

Figure 8. Amplitude ratio of the second harmonic to the fundamental vs koa. 

of the order of 100 miles, which means that a = 120 miles, or that 
3 < $ a  < 4. From figures 7 and 8 it is immediately apparent that for 
these values of koa only the fundamental edge wave, 

is excited. These results also show 
that for a disturbance of hurricane proportions to be an effective generator 

In analysbg 
the effects of disturbances off other coasts, the appropriate values of a, U, a, etc. 
must be used. 

L0(2k0 y) exp( - ko y)  sin ko(x - Ut),  
All other modes are negligibly small. 

* Henceforth we shall refer exclusively to hurricanes in this location. 
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of the first harmonic, it must travel at 70 knots at least. To  excite the 
second harmonic, it must have speeds of 120 knots or more. We may 
draw the conclusion that hurricanes will never effectively stimulate any 
other mode except the fundamental edge wave. For smaller disturbances 
the higher modes may be generated. A storm with a half-pressure radius of 
approximately 25 miles and a speed of 34 knots has a value of koa between 
0.75 and 1 ; k, is thus located exactly in the region where higher harmonics 
are stimulated. T o  induce still higher harmonics, disturbances must 
travel faster or be smaller in size or both. 

Let us investigate the fundamental mode, and determine the conditions 
(size, distance from shore, etc.) for optimum edge-wave generation. The 
wave form of the fundamental mode is given by 

7, = [2nP,(koa)2exp( -k,a)erfc ko ‘)]exp( - koy) sin ko(x - Ut). 
f g  

(58) 

The bracketed expression is the wave amplitude. To find the storm 
position yo that produces optimum amplitudes (with constant k, a), we 
must determine the value of yo, say y?, which maximizes 

that is, for whichf(yo) = 0. Hence, we need to solve 

2 exp(-u2) 
erfc u = - , where u = - yo/a + Bk, a. 

.\/.r koa 

For koa = 2, 2.5, 3.0, 3.5, we find u = 0.6, 0.9, 1.2, 1-5. In general these 
results yield maximum wave heights for yo in the range 25 to 35 miles. 
Table 2 summarizes these results, giving the maximum wave height in 
terms of the coefficient 2.rrPO/(pg). For a maximum pressure difference of 
one pound per square inch, the resulting wave heights, in the hurricane 
region koa = 3.5, are approximately 2.5 ft. It is seen that the wave 
height measured at the coast varies slightly with the distance of the storm 
centre from shore, being 2.3 ft. for yo = 0, and rising to a maximum of 
2.5 ft. 

Knowing that maximum wave heights are induced by hurricanes 
24 to 35 miles from shore, we can now determine what size disturbance 
in this region will produce the largest effects. We maximize the wave 
amplitude with respect to the variable a, holding ko and yo fixed. This 
leads to the equation 

2/7T erfc ( - yo/a -t $Ao a) = (yo/a + iko a)exp[ - (yola - +ko u ) ~ ] .  

For KO = 0-025 and yo = 30, a = 68 miles, and the half-pressure radius is 
yo + 54 miles. Our conclusion is that hurricanes are too big to produce 
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maximum wave heights; ‘smaller’ storms (ro = 50 miles) 25 to 35 miles 
from shore produce the largest waves (for a given pressure deviation Po). 

1/30 & 60 
1/40 & 80 

1/30 & 75 
1/40 & 100 

1/30 & 90 
1/40 & 120 

1/30 & 105 
1/40 & 142 

Maximum 
amplitude 

22.8 
30.4 

25-0 
34.0 

27.0 
36.0 

26-2 
37.0 

2nPo 
2.0 1 0.712 

3.0 

3.5 

-I 
0.328 ( ,, ) 

0.170 ( ,, ) 

2.0 
2.5 
3 .O 
3 . 5  

KO and a 

- 
- 

4.44 
2-3 

Storm centre 
(Y? 9 

In particular, if Po = 1 lb/in.2, and pg = 
62.5 Ib/ft.3, then 2nP0/(pg) = 14.5, and the 
following wave heights are computed for 
various distances yo. 

10.4 
7.65 
4.75 
2 -46 

I I 

yo = 100 

- 
- 

2 ’7-3 -7 
1 -65-2‘02 

Table 2. Maximum wave heights in fundamental mode : 
a and yo are in miles, and wave heights in feet. 

5. CONCLUSION 
We can now predict the effects of any particular distribution on the 

resurgence from a knowledge of the maximum pressure difference, half- 
pressure radius, and speed. One should hence be able to calculate the 
positions of highest tide along the east coast following hurricanes. While 
the amplitude of the resurgence is not in itself remarkable, the extremely 
long periods enable these waves to be effectively superimposed upon an 
incoming tide ; this is a dangerous situation, especially in those areas where 
there are resonant phenomena. A two foot or three foot crest coming 
several ‘hours after the passage of a storm (and therefore somewhat unex- 
pectedly), and superimposed upon the incoming tide, may greatly enlarge 
existing resonant wave motions (in bays, estuaries, etc.). While these 
situations cannot be avoided, it may be possible to reduce their effects by 
predicting their occurrence. 
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It should be noted that in order to simplify the mathematical analysis 
the effect of the earth’s rotation has been neglected. This approximation 
is quite proper for the study of wave motion whose period is a few hours 
or less. However in the application of the theory to hurricane resurgences 
it is estimated that errors of 15 % are probable. That we were able to 
obtain such excellent and consistent agreement between observation and 
theory with so glaring an omission is, to say the least, peculiar. At 
present those additional effects which presumably nullify the rather large 
contribution from rotation are unknown. 

The author wishes to thank Professor George Carrier for suggesting this 
problem and for his assistance in preparing this article. The paper is 
part of a thesis submitted in partial fulfillment of the requirements for the 
degree of Doctor of Philosophy in Applied Mathematics at Harvard 
University. The work was sponsored by the Scripps Institution of Oceano- 
graphy under contract from the Office of Naval Research. 
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